
Clustering-based Tile Embedding: A General
Representation for Level Design with Skewed Tile
Distributions
Mrunal Jadhav, Matthew Guzdial

Computing Science Department, Amii, University of Alberta, Canada.

Abstract
There has been significant research interest in Procedural Level Generation via Machine Learning (PLGML), applying ML
techniques to automated level generation. One recent trend is in the direction of learning representations for level design
via embeddings, such as tile embeddings. Tile Embeddings are continuous vector representations of game levels unifying
their visual, contextual and behavioural information. However, the original tile embedding struggled to generate levels with
skewed tile distributions. For instance, Super Mario Bros. (SMB) wherein a majority of tiles represent the background. To
remedy this, we present a modified tile embedding representation referred to as Clustering-based Tile Embedding (CTE).
Further, we employ clustering to discretize the continuous CTE representation and present a novel two-step level generation
to leverage both these representations. We evaluate the performance of our approach in generating levels for seen and unseen
games with skewed tile distributions and outperform the original tile embeddings.

Keywords
Procedural Level Generation via Machine Learning, Representation Learning,

1. Introduction
Procedural Content Generation via Machine Learning
(PCGML) involves training machine learning models on
existing game data to generate new content such as levels,
characters, stories, and music [1]. Due to limited pub-
licly available datasets, particular games have received a
disproportionate amount of attentions from PCGML re-
searchers, especially when it comes to level design. Thus
we identify a problem of diversity in Procedural Level
Generation via Machine Learning (PLGML).
To address this problem, PLGML researchers have re-

sorted to constructing their own training corpora. For
example, game level information can be represented as
images [2, 3], gameplay videos [4], or as abstractions of in-
game object behaviour [5, 6]. An example of this practice
and a valuable contribution to the PLGML community
is the Video Game Level Corpus (VGLC) [7], which pro-
vides an annotated training corpora for level generation
research. The VGLC represents a level with characters
called tiles. A rich amount of literature has leveraged
this representation to generate levels using various ma-
chine learning algorithms such as autoencoders, GANs,
and LSTMs [8, 9, 10, 11, 12]. However, the significant
amount of human effort that goes into converting game
levels to this representation limits the number of games
represented in this format.

Envelope-Open mrunalsu@ualberta.ca (M. Jadhav); guzdial@ualberta.ca
(M. Guzdial)

© 2022 Copyright © 2022 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Rather than relying on hand-authored representations
for level design, recent research has looked into learn-
ing these representations [13, 14, 15, 16]. We previously
introduced tile embeddings as a domain-independent vec-
tor representation of levels [17]. An autoencoder was
trained to take in mechanical affordances and the local
pixel context of a tile, and learned a representation uni-
fying these pieces of information. Tile embeddings have
shown promising results in generating levels where the
games have a good mix of tiles such as Lode Runner.
However, we found that tile embeddings struggled to
generate levels with imbalanced tile distributions. For
example, we observed that a tile embedding-based LSTM
level generator for Super Mario Bros. resulted in empty
levels (Figure 1(b)). This is a common problem in PCGML
when the process of sampling new levels is greedy and
biased towards the tile with the highest probability (in
the case of SMB: empty sky tiles) [18].

Traditional PLGML approaches have taken advantage
of the discrete nature of the VGLC representation to alle-
viate the issue of skewed tile distributions. For instance,
a level generator can be trained on the VGLC or any
discrete representation such that given a sequence of
previous tiles in a level, it predicts a distribution over
the likelihood of possible next tiles. When generating a
new level, tiles at each position can be sampled from this
probability distribution [8]. This sampling process solves
the problem of producing empty levels encountered with
a greedy tile selection strategy (Figure 1(b)).

In order to enable sampling in our level generator, we
learn a discrete representation by clustering learned tile
embeddings. Thus in the presented work, we leverage

mailto:mrunalsu@ualberta.ca
mailto:guzdial@ualberta.ca
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the benefits of learning simultaneous discrete and con-
tinuous representations to improve level generation for
games with skewed tile distributions. This allows us to
approximate the benefits of a discrete representation like
the VGLC without the cost of hand-processing training
data. The main contributions presented in this work are
as follows:

• We introduce Cluster-based Tile Embeddings
(CTE), which differ from our original tile embed-
dings [17] by the incorporation of edge informa-
tion and a cluster-based loss.

• We present a novel two-step level generation
pipeline based on discretizing our new embed-
ding representation.

• We demonstrate and compare the performance of
our CTE representation against both the original
tile embeddings and the VGLC representation
at the task of level generation for games with
skewed tile distributions.

• We demonstrate our approach’s ability to gen-
erate levels for two games that no prior PLGML
approach has attempted: Bugs Bunny Crazy Cas-
tle and Genghis Khan, based solely on images of
their levels.

2. Related Work
In this section, we discuss prior work that has investi-
gated the role of clustering in game level design, as our
approach learns to discretize our tile embedding using
clustering. Clustering is an unsupervised machine learn-
ing technique to discover groupings in data.
[19] employed clustering to help learn probabilistic

graphical models for Mario level design. [20] proposed
an approach to automatically identify sets of tiles, based
onMarkov Random fields and clustering. Similar to these
approaches, we use clustering as part of our represen-
tation learning. However, these previous studies have
based their clustering decisions solely on RGB repre-
sentations. In our presented work, along with the RGB
representation of a tile, we also incorporate behavioural
and edge information.

[21] employed a Variational Autoencoder with a Gaus-
sian mixture as a prior distribution (GMVAE) for level
generation. Their work relies on clustering to identify
similar (16 × 16) chunks from levels of multiple games.
The learned components of the Gaussian Mixture Model
are then used to generate new chunks of the same style.
[13] proposed neurosymbolic map generation using a
VQ-VAE and Wave Function Collapse (WFC). A VQ-VAE
quantizes patches of level images to a finite tileset on
which WFC is applied to generate levels. While [13] fo-
cused on discretizing large patches of level design images,
our work extracts representation of individual 16×16 tiles

similar to [21] Like both approaches, our work also uses
clustering for level generation. However, our approach
differs by learning continuous and discrete representa-
tions of tiles and utilising both for level generation.
To the best of our knowledge, we are the first to tie

clustering and embeddings together for representation
learning in PCGML. However, this approach has been
explored in other fields like reinforcement learning for
games. [22] introduced the shrinkage effect in training
an encoder for extracting representations of players in
professional ice hockey. It allows the model to transfer
information between the observations of different play-
ers such that statistically similar players lead to similar
representations under similar game contexts. We draw
a parallel to this work and implement clustering loss to
enforce intrinsic clustering and assign similar represen-
tations to tiles with similar RGB pixel representation,
affordances and edges.

3. System Overview
The goal of this work is to learn an improved tile em-
bedding for games with skewed tile distributions for the
task of level generation. Towards this objective, we be-
gin this section by discussing our modifications to the
original tile embedding autoencoder to learn our new
Cluster-based Tile Embeddings (CTE). Next, we explain
the limitations of an LSTM level generator trained on the
original tile embedding representation for games with
skewed tile distributions. We then present our novel two-
step level generation pipeline that learns a discretization
of our CTE through clustering and leverages both repre-
sentations for level generation.

3.1. CTE: Cluster-based Tile Embeddings
The VGLC tile-based representation of a level 𝐿 is an ℎ×𝑤
dimensional array. Here ℎ and 𝑤 are the height and width
of the level, respectively. Each character of 𝐿 is called a
tile which is associated with a 16×16 pixel representation
in a level image and a corresponding set of affordances.
Affordances convey a tile’s mechanical behaviour.

Our original tile embedding work employed a dual-
branched autoencoder to learn a 256-dimensional em-
bedding vector representation of a tile [17]. The net-
work accepted two inputs: 1) a 3*3 grid of the candidate
tile at the centre with its neighbours surrounding it in
the 16*16*3 RGB pixel representation (48 × 48 × 3), 2)
the candidate tile’s 13-dimensional one-hot affordance
vector. To compare more easily to the original tile em-
bedding work, we utilise the same set of games (Super
Mario Bros., Kid Icarus, Megaman, Lode Runner and Leg-
end of Zelda) as our training corpus and maintain the
same tile-affordance mapping. The tile-based level data

Figure 1: SMB LSTM level generator outputs with: (a) VGLC representation (b) original tile embedding (c) CTE. We also
include good (d) and bad (e) examples for our two-step CTE level generation process.

is taken from the VGLC corpus1 and the JSON files for
tile-affordance mapping are from the original tile embed-
ding implementation2. Wemake twomodifications to the
training of the original autoencoder to better handle level
design tasks for games with skewed tile distributions and
refer to the newly extracted 256-dimensional embedding
vector as the Cluster-based Tile Embedding (CTE).

3.1.1. Incorporating Edge Information:

When applying the original tile embeddings to games
where the affordance information was unknown, we
found that the latent space representations depended
predominantly on coloured pixel information of a tile.
For instance, an empty blue sky tile was placed close to a
solid blue brick tile. To discourage this, we included edge
information into our embedding. Canny edge detection
[23] is a common algorithm for identifying edge infor-
mation. We convert the 16 × 16 × 3 pixel representation
of a tile to grayscale and apply the canny edge detection
algorithm to obtain a 16 × 16 edge feature vector. Thus
for each candidate tile, we feed three inputs to our au-
toencoder: the pixel representation of the candidate tile
along with its neighbours (48 × 48 × 3), a 13-dimensional

1https://github.com/TheVGLC/TheVGLC
2https://github.com/js-mrunal/tile_embeddings

multi-hot affordance vector and (16 × 16) edge features.

3.1.2. Clustering Loss:

In the original tile embedding work, the learned latent
space was fairly continuous, without clear separation
between types of tiles. Learning more distinct groups
can improve the utility of a final representation [24].
With an aim to push representations of similar elements
closer while keeping representations of dissimilar ele-
ments apart, we introduce an explicit cluster-based loss
𝐿𝑐 in the training process. For this cluster-based loss, we
must cluster our data prior to training our autoencoder.
The idea is to leverage the clusters as a guide for repre-
sentation learning. For each candidate tile, its 16 × 16 × 3
RGB pixel representation, 13-dimensional multi-hot affor-
dance vector, and 16×16 edge vector are fed to a Gaussian
Mixture Model (GMM) [25].
A tile can belong to multiple clusters. For instance, it

is appropriate to assign a Cannon in MegaMan to a
cluster of Hazards as well as to a cluster of Solids. We
rely on a GMM in order to account for such potential
overlap in tile groups. We pick an elbow point based on
the Silhouette score and Bayesian Information Criterion
(BIC) to determine the optimal number of clusters [26, 27].
For the given VGLC dataset, we observe an elbow point

https://github.com/TheVGLC/TheVGLC
https://github.com/js-mrunal/tile_embeddings

Figure 2: A complete system diagram. We train an autoencoder on the RGB, affordance, and edge information using a
cluster-based loss to learn our Cluster-based Tile Embedding (CTE). We then discretize this representation via DBSCAN, and
train an LSTM level generator on this discretized CTE. We train a translation model (also an LSTM) to convert back to CTE
from the discrete representation output by the level generator.

at 10 clusters.
We compute our clustering loss (𝐿𝑐) as the categorical

cross entropy error between the GMM cluster assign-
ment of a given tile and its corresponding embedding
during training. Along with 𝐿𝑐, our loss function in-
cludes the mean squared error on the reconstructed edge
feature vector (𝐿𝑒), the mean squared error over the re-
constructed image data (𝐿𝑖) and the binary cross entropy
loss on the reconstructed affordances (𝐿𝑎). In totality, the
loss function can be mathematically represented as:

𝑇 𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 = (0.5 𝐿𝑖) + (1.5 𝐿𝑎) + (0.5 𝐿𝑒) + (0.5 𝐿𝑐) (1)

To accurately embed affordance information, we increase
the relative weight of its reconstruction.

3.2. Level Generation for Super Mario
Bros.

In this section, we describe the difficulty in generating
SMB levels using an LSTM trained on the original tile
embeddings and CTE, which motivated our novel two-
step level generation process described below.

3.2.1. Problems with SMB Level Generation:

We train two LSTM models, one on the original tile em-
beddings and the other on our CTE representation, for
SMB. We follow the training process from [17]. Sampling
from an LSTM trained on a continuous representation is
deterministic and hence for a given seed input, thesemod-
els generate only one output as shown in Figure 1(b) and
(c) respectively. In both cases we feed in the same 200 tiles
of flat ground as input. While the CTE representation
helps the LSTM learn to generate more reasonable output
than the original tile embedding, the output is repetitive
and does not reflect Mario-like structure. These outputs
show clear limitations of an embedding-based generator
in modelling levels with skewed tile distributions, given
that the outputs for games with balanced tile distribu-
tion appear much more like the original levels [17]. In
Table 4 of the Appendix, we outline the difference in tile
distributions for a skewed and a comparatively balanced
tile-based game.

Analysis: A possible explanation for these poor re-
sults is the lack of a sampling mechanism in the gener-
ator, since the CTE output is similar to the most likely

Mario level output from a probabilistic generator [18]. In
comparison, we observe higher quality results when our
LSTM is trained on the VGLC representation as seen in
Figure 1(a). The only difference between the two models
is in the output layer [17]. For the model trained on the
VGLC representation, the output layer is a probability
distribution 𝑝 over possible tile types [8]. The next tile is
sampled from 𝑝. If we simply pick the most likely next
tile, we output levels similar to Figure 1(c) even with the
VGLC representation. We cannot sample from an LSTM
trained on either tile embedding, as the LSTM would
output the closest tile embedding, not a probability dis-
tribution. To remedy this, we present a two-step level
generator which discretizes CTE.

The two steps of this level generator are to first gener-
ate levels in a discrete representation, allowing sampling
to occur. Then we have a secondary translation model
that converts the levels in this discrete representation
back into our CTE representation, so that we can visualize
them and extract the predicted affordances. This two-
step level generation process naturally requires training
two distinct models, one for each step. For both models
we use the same LSTM architecture used throughout this
paper.

3.2.2. Step I. Training LSTM on Cluster Levels:

To obtain the discrete representation of each level, we
leverage the latent structure imposed by the clustering-
based loss function. We first begin by converting each
level to the CTE representation and then feed all the
CTE embedding vectors to the density-based clustering
algorithm, DBSCAN [28]. Unlike partitioning-based and
distribution-based clustering algorithms, DBSCAN has a
number of benefits for clustering in a latent space [29],
which makes it highly relevant to this task.

Figure 2 shows the overview of our system architec-
ture. If we consider an SMB level of 150 × 16 VGLC tiles,
and replace each tile with its 256-dimensional embedding,
we get the 150 × 16 × 256 dimensional CTE representa-
tion. Further, if each of these embeddings is assigned
to a cluster we can simply represent a 256-dimensional
embedding by a cluster identifier to get a 150 ∗ 16 ∗𝐾 dis-
cretized representation, where 𝐾 is the optimal number
of clusters. We refer to this as our cluster representation.
For SMB, the optimal number of clusters (K) detected by
DBSCAN was 11 with a silhouette score of 0.91. We note
that we recalculate these clusters for each new game,
unlike the clusters used to inform the CTE cluster loss.
We note that we do this to learn a discrete representation
as we cannot use the VGLC level representation directly
or generating levels for games outside the VGLC corpus
would be impossible.

3.2.3. Step II. Translation Model:

The generated output of the previous step is in the cluster
representation and cannot be used directly. A cluster may
consist of many member tiles, thus a cluster identifier
may not be adequate for accurate visual and affordance
reconstruction. Therefore, we need a translation mecha-
nism to convert the cluster representation of a level to
its associated CTE representation. We train an LSTM
network to translate from the cluster representation to
CTE. Such a translation mechanism requires the knowl-
edge of context as well as affordances. For instance, to
rebuild a solid red brick tile pattern, red bricks cannot
be followed by blue bricks even though they may belong
to the same cluster. Therefore, as illustrated in Figure
2, a CTE representation of column 𝑐, depends on: a) the
underlying cluster representation of column 𝑐 and 𝑐 − 1,
b) the CTE representation of column 𝑐 − 1. With this
approach, we observed instances where the translation
model did not output CTE tiles from the correct clusters.
Thus, we replace translated CTE output with its nearest
neighbour from the correct cluster. Translated SMB test
dataset levels are shown in the Appendix.

4. Experiments
We evaluate our two-step level generation pipeline and
CTE representation by sampling levels for Super Mario
Bros., a game with a skewed tile distribution. We employ
commonly-used PCGML metrics to assess the quality of
our outputs in comparison to the outputs of an LSTM
trained on the VGLC representation, original tile em-
beddings, and CTE. Additionally, we test our approach’s
ability to represent and generate levels for two unan-
notated games: Bugs Bunny Crazy Castle and Genghis
Khan. In this section, we describe our experiments and
report our results.

4.1. Level Generation for SMB
The training corpus for this experiment consists of the
37 levels from Super Mario Bros. and Super Mario Bros.
2 (Japan) from the VGLC Corpus [7]. We analyze the per-
formance of our two-step level generator for SMB level
generation and compare it against the results of LSTMs
trained directly on the original tile embeddings, CTE,
and the VGLC representation [17, 8]. For all the level
generation models the history sequence is maintained at
200 tiles and the network consists of three layers each
comprised of 512 LSTM cells. We partition the data as
80-10-10% train, test and validation split. LSTMs trained
directly on the original tile embeddings and CTE output
the continuous embedding vector of the next tile whereas
the LSTMs trained on discrete CTE (two-step level gen-
eration) and the VGLC output a distribution over tiles

Dataset LSTM on VGLC Two-step level LSTM on CTE LSTM on original
generation tile embeddings

Leniency -0.0069 ± 0.0084 -0.0096 ± 0.0077 -0.0054 ± 0.0102 -0.0021 ± 0.0078 -0.0130 ± 0.0155
Density 0.1315 ± 0.0642 0.1669 ± 0.0654 0.1625 ± 0.0600 0.0485 ± 0.0310 0.0721 ± 0.0172
Linearity 0.0515 ± 0.0729 0.0362 ± 0.0514 0.0466 ± 0.0737 0.7234 ± 0.3540 0.8208 ± 0.3435

Interestingness 0.0254 ± 0.0133 0.0279 ± 0.0114 0.0227 ± 0.0082 0.0002 ± 0.0005 0.0002 ± 0.0003
Enemy Sparsity 42.0036 ± 17.512 34.6699 ± 7.7747 32.3738 ± 10.4389 0.25 ± 0.25 0.0 ± 0.0

Playability 86.4864 54.0 40.0 100.0* 0.0*

Table 1
Comparative study of SMB generators based on PCGML tile metrics. Bold indicates mean values nearest and Italic indicates
values farthest from the original mean dataset values. Asterisks indicate theoretical values.

with softmax activation at the final layer. This makes
sampling possible. The new levels are sampled tile by
tile by generating rows left to right then bottom to top.
Ideal output levels would match the style of existing

SMB levels. [30] suggested several metrics to assess the
style of generated content in comparison to the dataset.

• Leniency captures the difficulty of the level. Val-
ues closer to one indicate more lenient levels [30].
We compute leniency as,

𝑙𝑒𝑛𝑖𝑒𝑛𝑐𝑦 =
2𝑟 − (0.5 ∗ 𝑔) − 𝑒

𝑇
(2)

where 𝑟, 𝑔, and 𝑒 represent the counts for rewards,
gaps, and enemies respectively, and 𝑇 is the total
number of tiles in a level (𝑙 × 𝑤).

• Linearity measures how well a level fits to a
line. It is calculated as the mean squared error
between the centre points of each platform and
its projection on the linear regression line [30].

• Interestingness is an important metric espe-
cially for evaluating generators for skewed tile
distributions because the most probabilistic tile
is unlikely to be interesting. It measures the frac-
tion of tiles that bring visual variety to the level
[31].

• Density is the proportion of solid tiles in the
level. Density is a relevant here, as we observe
that it is possible for SMB generators to produce
only empty tiles because of their high probability
[31].

• EnemySparsity measures the horizontal spread
of the enemies across the level [31]. Because SMB
levels include lines of enemies, it is possible for
a generator to get stuck generating a continuous
string of enemies. We calculate enemy sparsity
as:

𝐸𝑛𝑒𝑚𝑦𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =
∑𝑒∈𝐸 |𝑥(𝑒) − 𝑥|

|𝐸|
(3)

where 𝑥 is the 𝑥-position of an enemy, 𝑥 the aver-
age 𝑥-position of enemies, and |𝐸| the total num-
ber of enemies.

• Playabilitymeasures the percentage of playable
levels generated. We run an A* agent provided in
the VGLC to check for the existence of path in a
level [7].

As illustrated in Figure 1, we observe a notable im-
provement in the quality of levels generated by our pro-
posed two-step level generator with CTE in comparison
to the LSTM on original tile embeddings and LSTM on
CTE. Compared to the good examples of level generation,
the bad ones are fairly empty and consist of unreachable
sections because of large platform gaps or height (Figure
1(e)). Meanwhile, the good examples show the presence
of more interesting tiles and have a coherent structure
better matching the style of the dataset (Figure 1(d)). But
these are only two examples.

Table 1 shows the results of the metrics-based evalua-
tion between 50 output levels generated by our two-step
level generator, LSTM on VGLC representation, LSTM on
original tile embeddings, LSTM on CTE and the original
SMB dataset. Level generation using discrete representa-
tions (VGLC and discrete-CTE) consistently outperforms
level generation using continuous representations (origi-
nal tile embedding and CTE) across all tile metrics. The
distribution of levels generated by the LSTM trained on
the original tile embeddings and the LSTM trained on
CTE is nowhere close to the distribution of the original
dataset. This is also evidenced in Figure 1 (b) and (c). We
take this to indicate that the two-step generation process
allows CTE to compete with the hand-authored VGLC
representation.
These results reinforces the importance of a discrete

representation and sampling in level generation for lev-
els with skewed tile distributions. Further, our two-step
level generator’s levels more closely resemble the train-
ing distribution compared to the VGLC generator levels
in Leniency, Density and Linearity. In a similar vein, al-
though the VGLC generator outperforms our approach
for the other two metrics, we find the performance com-
parable. The playability results are an oddity, since there
are levels the provided A* agent cannot complete in the
original dataset but the LSTM on CTE levels (because

Figure 3: Expressive range analysis for the unseen games.

they only include flat ground) can always be completed.
On the other hand, the VGLC and discrete-CTE level
playability values are comparatively close. We find these
results valuable as unlike discrete-CTE, the VGLC bene-
fits from being human-authored.
Approximating the actual distribution of game levels

accurately is difficult given the limited size of the test
split. Therefore the Dataset column summarizes metrics
across the entire dataset. To provide evidence that the
model is not overfit, we report the minimum tile edit
distance between cluster representations of generated
levels and the dataset levels of games in the Appendix.

4.2. Level Generation for Unseen Games
We train our two-step CTE level generator to generate
levels for two unseen games: Bugs Bunny Crazy Castle
(BBCC) and Genghis Khan. We downloaded 20 levels of
BBCC and 41 of Genghis Khan as our training corpus3.
We chose these particular games because of their con-
trasting degree of structure variance, with BBCC being
comparatively higher. For both games the affordance in-
formation is missing. In such cases, the clustering relies
on visual and edge data.

BBCC is an action-puzzle NES game where the player
moves Bugs through rooms collecting carrots. It has a set
of representative tiles consisting of solid brick patterned
background ; boxing gloves , invincibility potions

, safes , crates , and ten thousand-pound weights
that can be used against the enemies in the game;

and solid tiles , , , on which bugs can stand.
Genghis Khan is a turn-based strategy game. Its tiles
exhibit comparative similarity in structure as well as
colour. Thus, generating levels for both games allows us
to study the impact of structural variance in our learned
representation.
We train a two-step level generator on both games

by employing a similar process as for SMB. The only
difference is that we pass a zero vector for the affordances
when extracting the CTE representation. We found the
optimal number of clusters for the two-step generator

3https://vgmaps.com/

was 8 and 24 for BBCC and Genghis Khan respectively.
Examples of output levels are given in the Appendix.

To evaluate the performance of the generator, we em-
ployed expressive range analysis on the generated con-
tent in comparison to their respective datasets [30]. Due
to the limited size of test split, we use the entire dataset
to estimate the true distribution. We perform expressive
range analysis on Interestingness, Linearity and Density
for BBCC. For Genghis Khan, we approximate only Inter-
estingness and Leniency. We do not calculate Linearity
and Density since it is not a platformer game. The BBCC
metrics remain unchanged, as the game is sufficiently
similar to SMB. Interestingness in BBCC is calculated as
the frequency of tiles representing the items. Similarly,
interestingness in Genghis Khan is measured as the pro-
portion of tiles that bring visual variety to levels such
as mountains , forests , towns , and castles .
Further, we use the movement cost associated with each
tile to calculate the Leniency. We assign negative costs
to tiles that are difficult to move across such as -5 for
mountains and castles, -6 for deserts, and -8 for rivers.
In comparison, it costs less to move across regular land,
forests and towns thus we assign movement costs of 3, 3,
and 4 respectively. We calculate Leniency by summing
these movement costs normalized by the total number
of tiles in a level.
Figure 3 shows the expressive range analysis per-

formed on the generated levels of unannotated games in
comparison to the entire original datasets. For BBCC, our
model covers a considerable amount of the generative
space, with a large amount of overlap with the original
levels. However, we found lower output interestingness
than the true distribution. For BBCC, the density of levels
increases as linearity decreases, this is due to the fact that
as more platforms are generated vertically, levels become
denser due to the presence of platforms and stair tiles.
In comparison to BBCC, the Interesting-Leniency ex-

pressivity analysis for Genghis Khan does not match the
training distribution as closely, though there is still sig-
nificant overlap. We find that the generated outputs have
more challenge, more difficult terrain, compared to the
training dataset. Although these results can be improved,
we find them promising, indicating the capability of the

https://vgmaps.com/

generator to design levels for games based only on image
data.

5. Discussion, Limitation and
Future Work

The modified Cluster-based Tile Embeddings (CTE) and
the two step level generation pipeline demonstrated im-
proved performance in generating levels for Super Mario
Bros., and the ability to generate levels for unseen games.
Notably, our approach also shows potential in gener-
ating levels of non-platformer games such as Genghis
Khan, a turn-based strategy game. However, we can still
improve our pipeline further, especially for games with
structurally similar tiles and missing affordances.

We employ Silhouette Score and the Structural Similar-
ity Index to evaluate the performance of the Clustering
and Translator modules in the two-step level generation
pipeline. The results of these evaluations are in Appendix.
We find that clustering is a crucial component of our level
generation pipeline and the performance of the transla-
tion model improves with the quality of the clustering.
For Genghis Khan, the missing affordances and lack of
structural variability between representative tiles yielded
a low silhouette score, thus implying arbitrary clustering.
If the cluster participants have no particular structure,
we observe that the translation model struggles to map
cluster identifiers to embeddings.
We propose the following two avenues to explore in

terms of architecture to learn stronger representations:
(1) In the presented work, we approximate the mixture
of Gaussians before training an autoencoder. The recent
trend in structuring the latent space has been towards
Deep Clustering i.e., learning the embedding represen-
tations that optimize clustering and performing cluster
assignment simultaneously. In a similar vein, a GMVAE
imposes a mixture of Gaussians as a prior on the latent
space, which could be used to learn a more robust repre-
sentation [21]. (2) Discrete representations have benefits
over continuous representation for several PCGML tasks.
The VQ-VAE is a variant of the VAE that quantizes the
latent space to learn a discrete latent representation [32].
Leveraging a VQ-VAE could potentially simplify our cur-
rent level generation pipeline. Such an implementation
opens the possibility to having a common discrete rep-
resentation across multiple games and thus learning a
generalized level generator.

Before applying a VQ-VAE to learning tile embeddings,
we would need to address a number of caveats. In our
current work, we reflect on the idea that continuous and
discrete representations are both needed for level gener-
ation. While discrete representations are a natural fit for
many applications, learning only discrete representations
can limit the expressivity of the generator. Further, these

representations cannot be applied directly in tasks based
on interpolating between points in a learned latent space.
For example, in generating novel tiles. This might be rel-
evant in another future application of CTE: the PLGML
task of level blending [33].

6. Conclusions
In this work, we presented a novel architecture and train-
ing process to learn new Cluster-based Tile Embeddings
(CTE). To improve the quality of the embeddings, espe-
cially for unseen games, we incorporate edge features
and a new cluster-based loss. While tile embeddings per-
form poorly at generating levels for games with skewed
tile distributions, we propose a two-step level genera-
tion process to address this problem. We demonstrate
a strong performance at generating Super Mario Bros.
levels as well as two unseen games: Genghis Khan and
Bugs Bunny Crazy Castle.

Acknowledgments
We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) and
Alberta Machine Intelligence Institute (Amii).

References
[1] A. Summerville, S. Snodgrass, M. Guzdial,

C. Holmgård, A. K. Hoover, A. Isaksen,
A. Nealen, J. Togelius, Procedural content
generation via machine learning (pcgml), IEEE
Transactions on Games 10 (2018) 257–270.
doi:10.1109/TG.2018.2846639 .

[2] F. Schubert, M. Awiszus, B. Rosenhahn, Toad-gan:
A flexible framework for few-shot level generation
in token-based games, IEEE Transactions on Games
14 (2022) 284–293. doi:10.1109/TG.2021.3069833 .

[3] E. Chen, C. Sydora, B. Burega, A. Mahajan, A. Ab-
dullah, M. Gallivan, M. Guzdial, Image-to-level:
Generation and repair, in: Proceedings of the Six-
teenth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 16,
2020, pp. 189–195.

[4] A. Summerville, M. Guzdial, M. Mateas, M. O. Riedl,
Learning player tailored content from observation:
Platformer level generation from video traces us-
ing lstms, in: Twelfth artificial intelligence and
interactive digital entertainment conference, 2016.

[5] M. Guzdial, M. Riedl, Game level generation from
gameplay videos, in: Proceedings of the Twelfth
AAAI Conference on Artificial Intelligence and In-

http://dx.doi.org/10.1109/TG.2018.2846639
http://dx.doi.org/10.1109/TG.2021.3069833

teractive Digital Entertainment, AIIDE’16, AAAI
Press, 2016.

[6] A. Summerville, A. Sarkar, S. Snodgrass, J. C. Os-
born, Extracting physics from blended platformer
game levels, in: J. C. Osborn (Ed.), Joint Proceed-
ings of the AIIDE 2020 Workshops co-located with
16th AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE 2020),
Worcester, MA, USA, October 19-23, 2020 (online),
volume 2862 of CEUR Workshop Proceedings, CEUR-
WS.org, 2020. URL: http://ceur-ws.org/Vol-2862/
paper11.pdf.

[7] A. J. Summerville, S. Snodgrass, M. Mateas, S. On-
tanón, The vglc: The video game level corpus, in:
Proceedings of the 7th Workshop on Procedural
Content Generation, 2016.

[8] A. J. Summerville, M. Mateas, Super mario as a
string: Platformer level generation via lstms, in:
S. Björk, C. O’Donnell, R. Bidarra (Eds.), Proceed-
ings of the First Joint International Conference of
Digital Games Research Association and Founda-
tion of Digital Games, DiGRA/FDG 2016, Dundee,
Scotland, UK, August 1-6, 2016, Digital Games Re-
search Association/Society for the Advancement of
the Science of Digital Games, 2016.

[9] A. Sarkar, A. Summerville, S. Snodgrass, G. Bentley,
J. Osborn, Exploring level blending across plat-
formers via paths and affordances, in: Proceedings
of the Sixteenth AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment,
volume 16, 2020, pp. 280–286.

[10] A. Sarkar, Z. Yang, S. Cooper, Controllable level
blending between games using variational autoen-
coders, in: Proceedings of the 2019 Experimental
AI in Games Workshop., 2020.

[11] E. Giacomello, P. L. Lanzi, D. Loiacono, Doom level
generation using generative adversarial networks,
in: Proceedings of the 2018 IEEE Games, Enter-
tainment, Media Conference (GEM), IEEE, 2018, pp.
316–323.

[12] S. Thakkar, C. Cao, L. Wang, T. J. Choi, J. Togelius,
Autoencoder and evolutionary algorithm for level
generation in lode runner, in: Proceedings of the
2019 IEEE Conference on Games (CoG), IEEE, 2019,
pp. 1–4. doi:10.1109/CIG.2019.8848076 .

[13] I. Karth, B. Aytemiz, R. Mawhorter, A. M. Smith,
Neurosymbolic map generation with vq-vae and
wfc, in: Proceedings of the 16th International Con-
ference on the Foundations of Digital Games (FDG)
2021, 2021, pp. 1–6.

[14] R. Mawhorter, B. Aytemiz, I. Karth, A. Smith, Con-
tent reinjection for super metroid, in: Proceedings
of the Seventeenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
volume 17, 2021, pp. 172–178.

[15] C. Trivedi, K. Makantasis, A. Liapis, G. N. Yan-
nakakis, Learning task-independent game state
representations from unlabeled images, CoRR
abs/2206.06490 (2022). URL: https://doi.org/10.
48550/arXiv.2206.06490. doi:10.48550/arXiv.2206.
06490 . arXiv:2206.06490 .

[16] Y. Rabii, M. Cook, Revealing game dynamics via
word embeddings of gameplay data, in: Proceed-
ings of the Seventeenth AAAI Conference on Arti-
ficial Intelligence and Interactive Digital Entertain-
ment, volume 17, 2021, pp. 187–194.

[17] M. Jadhav, M. Guzdial, Tile embedding: a general
representation for level generation, in: Proceedings
of the Seventeeth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
volume 17, 2021, pp. 34–41.

[18] S. Snodgrass, S. Ontanón, Generating maps using
markov chains, in: Proceedings of Ninth Artificial
Intelligence and Interactive Digital Entertainment
Conference, 2013.

[19] M. Guzdial, M. Riedl, Learning to blend computer
game levels, in: Proceedings of the Seventh Inter-
national Conference on Computational Creativity,
2016.

[20] S. Snodgrass, Towards automatic extraction of tile
types from level images, in: J. Zhu (Ed.), Joint Pro-
ceedings of the AIIDE 2018 Workshops co-located
with 14th AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AIIDE
2018), Edmonton, Canada, November 13-14, 2018,
volume 2282 of CEUR Workshop Proceedings, CEUR-
WS.org, 2018. URL: http://ceur-ws.org/Vol-2282/
EXAG_119.pdf.

[21] Z. Yang, A. Sarkar, S. Cooper, Game level clustering
and generation using gaussian mixture vaes, in:
Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
volume 16, 2020, pp. 137–143.

[22] G. Liu, O. Schulte, P. Poupart, M. Rudd, M. Javan,
Learning agent representations for ice hockey, in:
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
H. Lin (Eds.), Proceedings of the Advances in Neural
Information Processing Systems, volume 33, Cur-
ran Associates, Inc., 2020, pp. 18704–18715. URL:
https://proceedings.neurips.cc/paper/2020/file/
d90e5b6628b4291225cba0bdc643c295-Paper.pdf.

[23] J. Canny, A computational approach to edge de-
tection, IEEE Transactions on pattern analysis and
machine intelligence (1986) 679–698.

[24] J. R. Hershey, Z. Chen, J. Le Roux, S. Watanabe,
Deep clustering: Discriminative embeddings for
segmentation and separation, in: Proceedings of
2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2016, pp.
31–35. doi:10.1109/ICASSP.2016.7471631 .

http://ceur-ws.org/Vol-2862/paper11.pdf
http://ceur-ws.org/Vol-2862/paper11.pdf
http://dx.doi.org/10.1109/CIG.2019.8848076
https://doi.org/10.48550/arXiv.2206.06490
https://doi.org/10.48550/arXiv.2206.06490
http://dx.doi.org/10.48550/arXiv.2206.06490
http://dx.doi.org/10.48550/arXiv.2206.06490
http://arxiv.org/abs/2206.06490
http://ceur-ws.org/Vol-2282/EXAG_119.pdf
http://ceur-ws.org/Vol-2282/EXAG_119.pdf
https://proceedings.neurips.cc/paper/2020/file/d90e5b6628b4291225cba0bdc643c295-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d90e5b6628b4291225cba0bdc643c295-Paper.pdf
http://dx.doi.org/10.1109/ICASSP.2016.7471631

[25] D. A. Reynolds, Gaussian mixture models, Encyclo-
pedia of biometrics 741 (2009).

[26] P. Rousseeuw, Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis, J.
Comput. Appl. Math. 20 (1987) 53–65. URL: https://
doi.org/10.1016/0377-0427(87)90125-7. doi:10.1016/
0377- 0427(87)90125- 7 .

[27] G. Schwarz, Estimating the Dimension of a
Model, The Annals of Statistics 6 (1978) 461 –
464. URL: https://doi.org/10.1214/aos/1176344136.
doi:10.1214/aos/1176344136 .

[28] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-
based algorithm for discovering clusters in large
spatial databases with noise, in: Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, AAAI Press,
1996, p. 226–231.

[29] H. Keller, H. Möllering, T. Schneider, H. Yalame, Bal-
ancing quality and efficiency in private clustering
with affinity propagation, in: S. D. C. di Vimercati,
P. Samarati (Eds.), Proceedings of the 18th Inter-
national Conference on Security and Cryptogra-
phy, SECRYPT 2021, July 6-8, 2021, SCITEPRESS,
2021, pp. 173–184. URL: https://doi.org/10.5220/
0010547801730184. doi:10.5220/0010547801730184 .

[30] G. Smith, J. Whitehead, Analyzing the expres-
sive range of a level generator, in: Proceed-
ings of the 2010 Workshop on Procedural Content
Generation in Games, PCGames ’10, Association
for Computing Machinery, New York, NY, USA,
2010. URL: https://doi.org/10.1145/1814256.1814260.
doi:10.1145/1814256.1814260 .

[31] A. Summerville, J. R. H. Mariño, S. Snodgrass, S. On-
tañón, L. H. S. Lelis, Understanding mario: An eval-
uation of design metrics for platformers, in: Pro-
ceedings of the 12th International Conference on
the Foundations of Digital Games, FDG ’17, Associa-
tion for Computing Machinery, New York, NY, USA,
2017. URL: https://doi.org/10.1145/3102071.3102080.
doi:10.1145/3102071.3102080 .

[32] A. Saravanan, M. Guzdial, Pixel vq-vaes
for improved pixel art representation, CoRR
abs/2203.12130 (2022). URL: https://doi.org/10.
48550/arXiv.2203.12130. doi:10.48550/arXiv.2203.
12130 . arXiv:2203.12130 .

[33] A. Sarkar, S. Cooper, Generating and blending game
levels via quality-diversity in the latent space of a
variational autoencoder, in: Proceedings of the
16th International Conference on the Foundations
of Digital Games (FDG) 2021, 2021, pp. 1–11.

https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aos/1176344136
https://doi.org/10.5220/0010547801730184
https://doi.org/10.5220/0010547801730184
http://dx.doi.org/10.5220/0010547801730184
https://doi.org/10.1145/1814256.1814260
http://dx.doi.org/10.1145/1814256.1814260
https://doi.org/10.1145/3102071.3102080
http://dx.doi.org/10.1145/3102071.3102080
https://doi.org/10.48550/arXiv.2203.12130
https://doi.org/10.48550/arXiv.2203.12130
http://dx.doi.org/10.48550/arXiv.2203.12130
http://dx.doi.org/10.48550/arXiv.2203.12130
http://arxiv.org/abs/2203.12130

Game Train Test
SMB 768.92 ± 140.98 743.06 ± 101.67

Genghis Khan 39.32 ± 3.93 40.98 ± 5.18
BBCC 192.39 ± 22.30 201.84 ± 19.24

Table 2
The edit distances observed between the generated cluster representations and the training and test data suggests that the
model is not overfitting.

Clustering Translation

Number of Clusters Silhouette Score Structural Similarity Index

SMB 11 0.91 0.9976 ± 0.0014
Genghis Khan 8 0.39 0.8689 ± 0.01

BBCC 24 0.53 0.9792 ± 0.0079

Table 3
Evaluating Clustering and Translator Modules using Silhouette Score and SSIM.

Super Mario Bros Lode Runner

Tile Example Tile Sprite Median Tile Example Tile Sprite Median

- , 88.33% . 58.09%

E , , 7.26% E 21.59%

S 0.99% G 8.52%

X 0.55% b 4.11%

< 0.51% # 3.26%

Table 4
Median percentages of top five tiles occurring in a level. This table illustrates skewed tile distribution in Super Mario Bros and
comparatively balanced tile distribution in lode runner tiles.

Figure 4: Figure (a) shows a test SMB dataset level and Figure (b) shows its translated output obtained using the second step
of our two-step generator. The differences between the two are highlighted in yellow. To get this translated version we convert
the dataset levels of a game to: 1) their cluster representation using the DBSCAN and 2) their CTE representation using our
newly trained autoencoder. We use these cluster representation and their corresponding CTE representation of dataset levels
to train the translation model as discussed in the two-step level generation process. Figures (c) and (d) show more examples of
SMB level generation output with the two-step level generator trained on our CTE representation.

Figure 5: Level Generation for Bugs Bunny Crazy Castle : (a) Test dataset level (left) and its corresponding translated output
(right) with differences highlighted in yellow (b) Examples of good generation output (c) Examples of bad generation output.
Unlike good examples as in shown in (b), bad examples in (c) show the presence of unreachable level sections due to the lack
of portals/doors, and inconsistency in level structure.

Figure 6: Level Generation for Genghis Khan : (a) Test dataset level (left) and its corresponding translated output (right) with
differences highlighted in red (b) Example of good generation output(c) Example of bad generation output. The dataset levels
of Genghis Khan only have one pair of town and castle tiles each whereas examples of bad generation (c), have multiple pairs.
The bad levels also contain randomly placed mountain and forest tiles, instead of the clustered appearance found in (b) and in
the original dataset.

	1 Introduction
	2 Related Work
	3 System Overview
	3.1 CTE: Cluster-based Tile Embeddings
	3.1.1 Incorporating Edge Information:
	3.1.2 Clustering Loss:

	3.2 Level Generation for Super Mario Bros.
	3.2.1 Problems with SMB Level Generation:
	3.2.2 Step I. Training LSTM on Cluster Levels:
	3.2.3 Step II. Translation Model:

	4 Experiments
	4.1 Level Generation for SMB
	4.2 Level Generation for Unseen Games

	5 Discussion, Limitation and Future Work
	6 Conclusions

